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Abstract. A new smoothing method of global optimization is proposed in the present
paper, which prevents shifting of global minima. In this method, smoothed functions are
solutions of a heat diffusion equation with external heat source. The source helps to con-
trol the diffusion such that a global minimum of the smoothed function is again a global
minimum of the cost function. This property, and the existence and uniqueness of the solu-
tion are proved using results in theory of viscosity solutions. Moreover, we devise an itera-
tive equation by which smoothed functions can be obtained analytically for a class of cost
functions. The effectiveness and potential of our method are then demonstrated with some
experimental results.
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1. Introduction

Various approaches have been proposed to tackle global optimization prob-
lems. Among them, smoothing methods are based on the intuition of
smoothing out local minima of cost functions. The methods appeal to us,
as they provide means of alleviating the difficulty of applying local search
in global optimization.

The class of smoothing methods includes the diffusion equation method
[19,21,26], the effective energy transformation method [31], and the others
appearing in the contributions [7,24,25,27–29]. These methods have been
applied mainly to optimum structures prediction of proteins and Lennard–
Jones clusters; the first method has been found successful also in solving
some standard test problems [18].

A smoothing method attempts to evolve the cost function into a
(smoothed) function possessing only one minimum. This minimum can
then be sought effectively by local search. Because the minimum may have
shifted away from the global minimum of the cost function, a reversing
procedure [26] has to be employed. However, for some cost functions, the
shift can be so severe that the procedure ends up reaching merely a local
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minimum. As there exist no useful conditions that would ensure conver-
gence to the global minimum, smoothing methods are hindered by this
difficulty.

A possible remedy is to ensure that the global minimum does not shift
during evolution. The method proposed here uses a more sophisticated
governing equation, under which the evolution preserves global minima. As
we will show in Section 3, global minima of the smoothed and cost func-
tions always coincide. As a result, the above-mentioned difficulty does not
exist in our method.

Let f be the cost function of an unconstrained global optimization
problem. The smoothed function in our method is defined as u(t, ·), where
u is a real-valued function on [0, T )×R

n satisfying the governing equation

∂u

∂t
(t, x)=�u(t, x)−max {0,�u(t, x)} , 0<t <T, (1)

with u(0, ·) = f . In this paper �u denotes the Laplacian of u with
respect to the “spatial variables”. This equation models heat diffusion pro-
cesses with the external heat source –max{0,�u}. This term controls diffu-
sion processes by weakening the smoothing effect around minima of the
smoothed functions. As a result, global minima of the cost function sur-
vive through the evolution. More precisely for t1<t2 any global minimum
of u(t1, ·) is again a global minimum of u(t2, ·). A more detailed discussion
on the source term will appear in Section 2.

Another key issue in this paper regards computation of smoothed func-
tions. To compute the functions, we need to solve the initial-value prob-
lem associated with the governing equation (1). The analytical solution is
not pursued in this paper due to difficulties brought by the nonlinearity of
the equation. Unfortunately, widely accepted solution schemes such as the
finite difference method, collocation method and finite element method are
infeasible. To approximate derivatives, these methods require discretization,
i.e., evaluating the cost function on grid points. In case of high dimensional
problems, they would render impotent as the number of grid points and
function evaluations grow exponentially.

Under the circumstances, we devise a new scheme which does not require
discretization. The central idea is to replace the Laplacian in the governing
equation by an explicit expression. This leads to a simple iterative equa-
tion from which we can compute smoothed functions without function
evaluation for cost functions of certain classes, such as linear combinations
of Gaussian functions.

The potential and feasibility of the proposed method are then examined
by experiments. The cost functions in the experiments are linear combi-
nations of Gaussian functions. The results demonstrate that the method
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is capable of smoothing out cost functions and also preserving global
minima.

We remark that the proposed method is still in its infancy, and the
objective here is to establish both theoretical and practical foundations for
future developments. The paper is organized as follows : In Section 2, the
role played by the source term is elaborated. Section 3 considers some the-
oretical aspects of the method, presenting our uniqueness and existence
result and the global minima preserving property. The property is then
illustrated by several simulation examples. In Section 4 a new scheme for
computing smoothed functions is presented; a few issues associated with
the scheme are also discussed. In Section 5 the potential of the proposed
optimization method is demonstrated with experimental results.

2. Heat Diffusion with Source

Equation (1) is a special case of a more general equation:

∂u

∂t
(t, x)=�u(t, x)+S(t, x), (2)

where S is a real function. This equation models many physical phenom-
ena. The one described below, which appears in many standard textbooks,
is probably the most well-known.

Suppose that there is an infinitely long metal rod with initial temperature
distribution u0 as shown in Figure 1. Assume that the rod is made of pure
metal, perfectly insulated, and heated continuously over the time interval
(0, T ) by a candle flame. It can be shown that if u is the solution of (2)
with u(0, ·)=u0, then u(t, x) is equal to the temperature of the rod at (t, x).
In this example S(t, x) represents the temperature change at (t, x) induced

Figure 1. Controlling a heat diffusion process using a candle flame as external heat source.
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by the external energy source, i.e., the candle flame. Clearly the final tem-
perature distribution u(T , ·) will be very different from the case when no
external heat source has been applied (dashed line).

The role of the source term would be apparent if we think of the metal
rod as a system1 and u(t, ·) as its state at time t . In this regard S becomes
a control input to the system. It is suggested that by applying a suitable
control, one could readily drive u(t, ·) to a desired final state [12].

Our desired state is a function which has the same global minimum as
that of the initial state (cost function). Therefore we define

S(t, x)=−max{0,�u(t, x)},

as given in (1). This source term counterbalances diffusion effects around
minima of u. At a point close to a minimum, �u is positive and hence the
left hand side of (2) vanishes. As a result u does not evolve at that point.
The minimum sustains through the smoothing for a longer period than the
maxima do, and only global minima will survive eventually.

3. Theoretical Study

In this section, we study some properties of the initial-value problem asso-
ciated with (1). First of all, we give a more precise problem formulation
and define the terms which will appear frequently. This is followed by a
quick overview of theory of viscosity solutions, which will provide us with
the machinery for proving the properties. Finally we give several simulation
examples to demonstrate the properties.

3.1. problem formulations

The proposed optimization method tackles unconstrained global optimiza-
tion problems. Let f :Rn → R be the cost function. The problem is to find
a point x∗ ∈ R

n such that f (x∗)� f (x) for all x ∈ R
n. We say that x∗ is a

global minimum of f if the inequality is satisfied; x∗ is called a minimum
of f if there exists an ε >0 such that f (x∗)�f (x) for all x ∈R

n with ‖x−
x∗‖<ε, where ‖ ·‖ denotes the Euclidean distance. The existence of a min-
imum in an open set is not guaranteed in general [16], it is sufficient to
assume that f has at least one minimum in R

n.
To tackle the optimization problems, our method does not minimize the

cost function directly. Instead, it first transforms f into a smoothed func-
tion u(t, ·) for 0<t <T . Here u is the solution of the initial-value problem

1One may consider an one-variable function as a vector with infinite number of entries. Such
a system is therefore referred to as an infinite dimensional system.
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associated with the following equation and initial condition:

(GE) ut (t, x)=min{0,�u(t, x)}, (t, x)∈ (0, T )×R
n

(IC) u(0, x)=f (x), x ∈R
n,

(3)

where ut and �u denote, respectively, the derivative ∂u/∂t and Laplacian

�u= ∂2u

∂x2
1

+ ∂2u

∂x2
2

+· · ·+ ∂2u

∂x2
n

, x= (x1, x2, . . . , xn)
T.

We refer to this problem as a smoothing problem.
By the initial function we mean the function f or u(0, ·). Initial functions

are assumed to be continuous on R
n with at least one minimum. However,

as we will see in Proposition 3.3, additional assumptions are needed for
our main results to hold. The governing equation and initial condition are
labeled as (GE) and (IC). The right hand sides of (GE) and (1) are indeed
identical because �u−max{0,�u}=min{0,�u}.

The following notations will be used subsequently: If X is a symmetric
matrix, then tr(X) and ‖X‖ denote its trace and operator norm, respec-
tively. Moreover Du and D2u denote, respectively, the gradient vector and
Hessian matrix with respect to the spatial variables x1, x2, . . . , xn. The
meanings of �u and tr(D2u) are clearly equivalent.

3.2. theory of viscosity solutions

The aim of this subsection is to give a basic concept of viscosity solutions,
and to prepare the reader for the theoretical studies. A formal definition of
the solution and some useful results can be found in Appendix A.

Theory of viscosity solutions2 considers a class of fully nonlinear partial
differential equations (PDE) of second order. The notion was proposed to
study problems that do not have differentiable solutions [9] (Examples can
be found in [8,10,11]). In order to investigate those problems, one has to
relax the requirements for a solution, and seek for a weaker notion. In this
regard, definitions of viscosity solution (such as shown in Definition A.1)
do not require differentiability, and hence allow merely continuous func-
tions to be the solutions. As a consequence a viscosity solution, say υ,
does not necessarily satisfy the PDE everywhere in the domain. But if υ is
twice continuously differentiable at a point, then it must satisfy the equa-
tion at that point. Therefore υ will be qualified as a classical solution if
it is twice continuously differentiable on the domain. So, viscosity solution
can be considered as a weak version of classical solution.

2The name refers to the vanishing viscosity method used in proving an existence result.
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The main references for this paper are the contributions by Crandall
[8,11], Chen [4], Giga [15] and Barles [1]. The first two papers are
self-contained expositions of basic theories, concentrating on results for prob-
lems with bounded domains. The last two consider existence and uniqueness
results of parabolic equations on unbounded domains, such as R

n.
As we will see later, the theory provides us not only very general exis-

tence and uniqueness theorems, but also a lot of useful results under
mild conditions. This machinery greatly simplifies the proofs of our results.
Moreover, by virtue of the properties of viscosity solutions, our method
is suitable for both smooth and nonsmooth initial functions. It can tackle
optimization problems with nonsmooth cost functions.

Since viscosity solutions are the primary ones for the current discussion,
we will occasionally drop the term “viscosity”. It follows that subsolutions,
supersolutions and solutions are various viscosity solutions unless specified
otherwise.

3.3. main results

Before presenting the main results, let us recall a definition and a well-
known property of convex envelopes. The property is that every global
minimum of a function is again a global minimum of its convex envelope,
and both functions have the same optimum values. This will be used in
proving the global minima preserving property.

DEFINITION 3.1. (Convex envelope). Let f be a lower semicontinuous
function on �, where �⊂ R

n is nonempty and convex. The convex enve-
lope of f over � is a function f such that

1. f is convex on �;
2. f (x)�f (x) for every x ∈�;
3. if h is a convex function on � such that h(x)� f (x) for every x ∈�,

then h(x)�f (x) for every x ∈�.

THEOREM 3.2. Let �⊂ R
n be a convex set, and assume that f : � → R

has a least one minimum in �. If f is the convex envelope of f over �, then

f ∗ :=min
x∈�

f (x)=min
x∈�

f (x),

{x ∈� :f (x)=f ∗}⊂{x ∈� : f (x)=f ∗}.

Now we turn to our existence and uniqueness result, which will be proved
using Proposition 3.3. Before stating the proposition, let us introduce a
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notation: By a modulus we mean a continuous function m on [0,∞) which
is monotonically increasing on (0,∞) with m(0)=0.

PROPOSITION 3.3 (Comparison). Let f be the initial function of a smooth-
ing problem, which satisfies the following conditions:

(U1) There exists a number K1>0 such that |f (x)|�K1(‖x‖+1) for every
x ∈R

n;
(U2) There exists a modulus m such that f (x)− f (y)�m(‖x − y‖) for

every x, y ∈R
n;

(U3) There exists a number K2>0 such that f (x)−f (y)�K2(‖x−y‖+1)
for every x, y ∈R

n.

Let µ and ω be, respectively, subsolution and supersolution of the problem. If
there exists a number K>0 such that

µ(t, x)�K(‖x‖+1) and ω(t, x)�−K(‖x‖+1)

for every (t, x)∈ (0, T )×R
n, then µ�ω on (0, T )×R

n.

This proposition is a special version of Theorem A.3 shown in
Appendix A; the latter was given in [15] and considers a wider class of par-
abolic equations. Our equation (GE) in fact belongs to this class since the
assumptions (Fl)–(F4) hold for

F(X) :=−min{0, tr(X)}, X∈Sn.
The first three are due to the continuity and monotonicity of F . The last
one is justified because each entry of X∈Sn with ‖X‖�R has magnitude
not exceeding

√
nR, and hence cR �n√nR.

Proof of Proposition 3.3. Let µ∗ and ω∗ be, respectively, the upper semi-
continuous envelope of µ and lower semicontinuous envelope of ω. (Defini-
tions of semicontinuous envelopes will be given in Appendix A.) From (14)
and (15) we see that µ∗(0, ·)� f �ω∗(0, ·) and hence µ∗(0, x)−ω∗(0, y)�
f (x)− f (y) for every x, y ∈ R

n. The conditions (V2) and (V3) in Appen-
dix A are therefore satisfied. The condition (V1) is also satisfied because
of the assumptions on µ and ω. We then apply Theorem A.3 to prove the
proposition.

In Proposition 3.3 the “growth conditions” (U1)–(U3) are imposed to
restrict the behavior of the solution at infinity. Indeed, for most PDE,
comparison results fail to hold on unbounded domains without growth
conditions. (The heat equation is an example [13].) Exceptional cases are
discussed in [1].
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Using Proposition 3.3 in conjunction with Perron’s method, we can show
that the smoothing problem has unique solution. This is a rather standard
technique, and we will essentially follow the proofs of Theorem 3.1 of [1]
and Theorem 4.1 of [11]. We therefore defer the proof to Appendix A with-
out distracting the current discussions.

PROPOSITION 3.4 (Existence and uniqueness). Let f be the initial func-
tion of a smoothing problem, which satisfies (U1)–(U3). Then the problem
has a unique viscosity solution u, which is continuous on [0, T )×R

n and sat-
isfies |u(t, x)|�K(‖x‖+1) for a number K>0 and every (t, x)∈ (0, T )×R

n.

Our next task is to prove the global minima preserving property. This
will be accomplished by applying the following propositions. They state
that u(t, ·) is monotonically decreasing but bounded below by the convex
envelope of the initial function.

PROPOSITION 3.5. Let f and u be, respectively, the initial function and
viscosity solution of a smoothing problem. If f satisfies (U1)–(U3), then
f (x)� u(t, x)� f (x) for every (t, x) ∈ (0, T )× R

n, where f is the convex
envelope of f over R

n.
Proof. Let g(t, x)= f (x) and g(t, x)= f (x) for each (t, x)∈ [0, T )× R

n.
Proposition A.4 implies that g and g are, respectively, viscosity supersolu-
tion and subsolution of the smoothing problem. Because g(t, x)� f (x)�
K1(‖x‖+1) and g(t, x)�−K1(‖x‖+1), where K1 is given in (U1), Propo-
sition 3.3 suggests that f (x)=g(t, x)�u(t, x)�g(t, x)=f (x).

PROPOSITION 3.6 (Monotonicity). Let f and u be, respectively, the initial
function and viscosity solution of a smoothing problem. If f satisfies (U1)–
(U3), then u(t2, x)�u(t1, x) for any 0� t1<t2<T and x ∈R

n.
Proof. Let v(t, x)=u(t + τ, x) for τ >0 and every (t, x)∈ [0, T − τ)×R

n.
As suggested by Proposition A.5 υ is a subsolution of the problem on
(0, T −τ)×R

n. Because υ(t, x)�K(‖x‖+1) for some K>0, we invoke the
comparison to show that u(t+ τ, x)�u(t, x). The proposition is proved by
putting t1 = t and t2 = t+ τ .

In fact f is also the convex envelope of u(t, ·) over R
n for each fixed t .

This can be verified by considering a convex function h : Rn → R such that
h�u(t, ·) on R

n. Proposition 3.5 suggests that h� f on R
n, and therefore

h�f on R
n by the definition of convex envelopes. This proves the assertion.

Given these ingredients, we are ready to prove the global minima preserving
property. By combining Propositions 3.5 and 3.6, we obtain the inequality:
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f (x)�u(t2, x)�u(t1, x)�f (x) (4)

for every x ∈ R
n whenever 0 � t1 < t2 < T . This equation implies that any

global minimum of u(t1, ·) is again a global minimum of u(t2, ·). This can
be proved by contradiction as follows.

Suppose that x1 is a global minimum of u(t1, ·) but not a global
minimum of u(t2, ·). If x2 is a global minimum of u(t2, ·), then u(t2, x2)<

u(t2, x1) � u(t1, x1). Since f is the convex envelope of both u(t1, ·)
and u(t2, ·) over R

n, they must have the same optimal values, i.e., u(t2, x2)=
u(t1, x1) in view of Theorem 3.2. This contradicts the last inequality. We
have just proved the following proposition:

PROPOSITION 3.7 (Global Minima Preserving). Let u be the viscosity
solution of a smoothing problem whose initial function satisfies (U1)–(U3).
For 0� t1<t2<T , if x∗ is a global minimum u(t1, ·), then it is also a global
minimum of u(t2, ·) and u(t1, x∗)=u(t2, x∗).

Because of the dissipative property of (GE), the roughness of u(t, ·)
decreases with time. At the moment, we lack useful rules to determine
if the function would eventually become unimodal. Nevertheless, com-
puter simulations for bivariate functions indicate that minima in relatively
“narrow” basins usually disappear rather quickly. It appears that if the ini-
tial function resembles a combination of a unimodal function and a low-
amplitude “noisy” signal, then u(t, ·) would probably become unimodal for
t large enough.

Unfortunately, as we observe, smoothed functions usually evolve very
slowly at saddle points, say xs , with �u(t, xs)� 0. At those points, evolu-
tion slows down because ut(t, xs)= min{0,�u(t, xs)}=0. It may take quite
a long time to smooth out the barrier at xs .

This difficulty can be remedied by substituting λmin(D
2u) into (GE)

for �u, where λmin(D
2u) denotes the smallest eigenvalue of D2u. A sim-

ilar idea is employed by the evolution equation proposed in [30]. The
author showed that the viscosity solution of the equation under appro-
priate boundary conditions converges to the convex envelope of the ini-
tial function. However, the analytical solution remains unknown at the
moment. The equation has little contribution to the current research unless
a suitable solution method can be devised.

Remark 3.1. Let Q⊂ R
n be bounded. By virtue of Theorem 4.1 of [4],

our comparison result holds for the initial-boundary-value problem of

ut =min{0,�u} on (0, T )×Q and u=f in ({0}×Q)∪ ([0, T ]× ∂Q)
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without the conditions (Ul)–(U3). Namely, if µ and ω are, respectively,
viscosity subsolution and supersolution of the PDE satisfying µ � ω in
({0} ×Q)∪ ([0, T ] × ∂Q), then µ�ω on (0, T )×Q. Using this result one
can prove that (4) and Proposition 3.7 hold for any initial function and
x, x∗ ∈Q. The existence and uniqueness of the solution u follow directly
from Theorem 4.4 of [4].

3.4. numerical examples

We now demonstrate the theoretical results with several simulation exam-
ples, as shown in Figures 2 and 3. To do that, we approximate the val-
ues of the smoothed functions at a set of grid points using finite difference
schemes. The grid point with the lowest function value will be considered
as the global minimum. Such a point should be a good estimate for the
exact global minimum if the grid is fine enough.

Because finite difference schemes assume bounded domains with fixed
boundary values, we need to consider a domain “larger” than that of our
interest. For example, suppose that we are interested in observing the smoothed
functions on [a, b]. Then we solve φt =min{0,�φ} on (0, T )× (ā, b̄) under the
condition φ = f in ({0} × [ā, b̄])∪ ([0, T ] × {ā, b̄}). Here we choose ā < a so
small and b̄ >b so large that φ≈u on (0, T )× [a, b], where u is the solution of
the smoothing problem. The same technique is used for bivariate functions.

We will propose another scheme in Section 4, which generates smoothed func-
tions analytically. The scheme, however, is not suitable for this demonstration
because it is still in its infancy and only applicable to certain classes of functions.

The initial function in the first example is a linear combination of
Gaussian functions, which takes the form

f (x)=−
N∑

j=1

cj exp(−aj‖x+yj‖2),

where x, yj ∈ R and aj , cj > 0 for j = 1,2, . . . ,N . This function and
its smoothed function are displayed in Figure 2(a) using solid-lines and
dashed-lines, respectively. The figure shows that f has six minima in
[−0.8,0.8]. All of them are smoothed out except the global minimum,
which coincides with the global minimum of the smoothed function. More-
over, both functions have identical optimum values.

The initial function for the second example is the polynomial

f (x)=162.01x8 +21.20x7 −221.57x6 −18.88x5 +96.24x4 +4.01x3

−13.44x2 +0.07x+0.67.
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(a)

(b)

Figure 2. One-variable initial functions and their smoothed functions.
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(c)

(a) (b)

(d)

(f)(e)

Figure 3. Two-variable initial functions and their smoothed functions.

This function and its smoothed function are plotted in Figure 2(b) using
solid-lines and dashed-lines, respectively. Like the previous example, the
global minimum of f is preserved while other minima disappear gradually.
The following observation is worth mentioning. The smoothed function is
very close to the convex envelope of the initial function. As we observe, the
former keeps approaching the latter as the smoothing continues. It appears
that the smoothed function converges uniformly to the convex envelope.
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Next we consider three examples in which the initial functions depend on
two variables. Namely, the polynomial f (x, y)= (0.98 −x2 −y2)2, the sine-
square function

f (x, y)= π

2

{
10 sin2

(πx)+ (x−1)2[1+10 sin2
(πy)]+ (y−1)2

}

and the Shubert III function

f (x, y)=
⎧
⎨

⎩

5∑

j=1

j cos[(j +1)x+1]

⎫
⎬

⎭

⎧
⎨

⎩

5∑

j=1

j cos[(j +1)y+1]

⎫
⎬

⎭

+(x+1.42513)2 + (y+0.80032)2.

The last two functions have been widely used for benchmarking global
optimization algorithms (see [14,23] for instances). The last function is
moreover recognized as an important test function because of the large
number of minima and the steep slope around the global minimum.

As seen in Figure 3(a) and (b), each global minimum of the polyno-
mial coincide with a global minimum of the smoothed function. The set
of all global minima of the polynomial, i.e., the circle x2 + y2 = 0.98,
is actually contained in that of the smoothed function. This agrees with
Proposition 3.7.

Shown in Figure 3(c), the sine-square function has around 100 minima
in the domain [−10,10]2 as reported in [14]. They are all smoothed out
except the global minimum, which is preserved as seen in Figure 3(d). The
smoothed function is unimodal, having the same optimum value as that of
the initial function. As we observe, the function is very close to the convex
envelope of the initial function over [−10,10]2.

Let us turn to the Shubert III function shown in Figure 3(e). The result
is less appealing compared with the previous examples. The smoothed func-
tion has more than one minimum as seen from 3(f). Because saddle points
have formed, the evolution slows down. But the smoothing still yields a
notable reduction on the number of minima: The initial function has 760
minima in the domain [−10,10]2 but only 18 of them remain. The figures
show that the global minimum is preserved.

4. A Solution Method for Smoothing Problem

Because smoothed functions are solutions of smoothing problem, the
effectiveness of the proposed optimization method largely relies on an
efficient solution scheme. Unfortunately, the governing equation (GE)
is a nonlinear PDE whose analytical solution is generally difficult to
obtain.



382 LAU AND KWONG

Even worse, it seems to us that widely employed solution schemes, such
as the finite difference method, the collocation method and the finite ele-
ment method, are infeasible in the present application. This is because they
require evaluating initial functions on grid points (or discretization) in order
to approximate derivatives. In case of multi-variable problems, the schemes
would render impotent as the number of grid points grows exponentially.
Moreover, for many cost functions, a good estimate of the global minimum
can be obtained merely by comparing the function values at the grid points.
Therefore it would be redundant to carry out smoothing after discretization.

In this section a new solution method is proposed, which does not
require discretization. The main idea is to replace the Laplacian �u(t, x)

in (GE) by the difference equation

�u(t, x)≈ 1
δt

[T (δt)u(t, x)−u(t, x)], (t, x)∈ (0, T )×R
n, (5)

where δt is the time step, and T (δt) is an operator to be introduced shortly.
As we will see, a simple iterative scheme can be constructed based on this
equation. Using this scheme, we can compute smoothed functions analyti-
cally (without discretization) whenever T (δt)u can be obtained explicitly.

4.1. derivations

Let us first give a formal derivation of (5). Consider a function υ which
satisfies the heat equation with the initial condition:

υτ (τ, x)=�υ(τ, x), (τ, x)∈ (0, T )×R
n,

υ(0, x)=υ0(x), x ∈R
n.

(6)

Here we denote by τ the time variable, so that it will not be confused with
that of smoothing problem. The solution is equal to [17]

υ(τ, x)=T (τ )υ0(x) for every (τ, x)∈ [0, T )×R
n,

where T is called the diffusion operator, written as

T (τ )υ0(x)= 1
(2

√
πτ)n

∫

Rn

υ0(y)e
− 1

4τ ‖x−y‖2
dy.

The solution υ is infinitely differentiable on (0, T )× R
n. So, we invoke

Taylor’s theorem to express �υ(τ, x) as

�υ(τ, x)=υτ (τ, x)
= υ(δt+ τ, x)−υ(τ, x)

δt
+O(δt) as δt→0.
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Assume that υ0 is twice continuously differentiable on R
n. Because υ and

�υ are continuous on [0, T )×R
n,

�υ0(x)= lim
τ→0

�υ(τ, x)

= lim
τ→0

υ(δt+ τ, x)−υ(τ, x)
δt

+O(δt)

= υ(δt, x)−υ0(x)

δt
+O(δt) as δt→0.

Finally, we set υ0 =u(t, ·) on R
n. Because υ(δt, x)=T (δt)υ0(x)=T (δt)u(t, x),

we obtain the approximation (5), namely

�u(t, x)= T (δt)u(t, x)−u(t, x)
δt

+O(δt) as δt→0.

Now substitute the above equation and the difference equation

ut(t, x)= u(t+ δt, x)−u(t, x)
δt

+O(δt)

into (GE) to obtain

u(t+ δt, x)=u(t, x)+min{0,T (δt)u(t, x)−u(t, x)}+O(δt2) (7)

as δt→ 0 for every (t, x)∈ (0, T )×R
n. This equation prompts us to define

the following iterative equation:

uk+1(x)=uk(x)+min{0,T (δt)uk(x)−uk(x)} (8)

for k=0,1, . . . , T δt−1 −2. Equation (7) suggests that if u0 :=f where f is
the initial function, then uk is an approximation of u(kδt, ·).

Suppose that u0, u1, . . . , uk are known. Then uk+1 can be computed using
(8) without evaluating uk if

T (δt)uk(x)= 1
(

2
√
πδt

)n
∫

Rn

uk(y)e
− 1

4δt ‖x−y‖2
dy (9)

can be solved explicitly. However, this can hardly be achieved because uk
in the integrand is in the form uk=uk−1 +min{0,T (δt)uk−1 −uk−1} and the
zeros of T (δt)uk−1 −uk−1 are assumed to be unknown. This difficulty will
be addressed in the next subsection.
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4.2. application to smoothing of gaussian functions

As mentioned previously, the integral (9) is usually unable to be solved
explicitly. Our remedy is to replace min{0, ·} in (8) with an approximat-
ing polynomial. As we will show later, if the initial function is a series
of Gaussian functions, then uk generated from the new equation is again
a series of Gaussian functions. This ensures that the integral (9) can be
solved explicitly for every k.

We remark that we have not imposed any strong assumptions on the ini-
tial function in deriving (8). The equation can thus be employed for other
types of initial functions, provided that the integral (9) can be obtained or
approximated efficiently.

4.2.1. A Modified Iterative Equation

By a series of Gaussian functions we mean a function defined by

f (x)= c1g1(x)+ c2g2(x)+· · ·+ cNgN(x)
for every x ∈ R

n. We refer to N as the length of f , and to −1 � ci � 1 as
the coefficients of f . In this equation gi are Gaussian functions, namely,

gi(x)= exp(ai‖x+yi‖2),

where yi ∈ R
n and ai are negative numbers. Moreover, we denote by G(n)

the set of all series of Gaussian functions of n variables.
Suppose that the operator min{0, ·} in (8) is now replaced by a polyno-

mial of rth order. The new equation is then in the following form:

uk+1 =q0 +uk +q1[T (δt)uk −uk]+q2[T (δt)uk −uk]2
+· · ·+qr [T (δt)uk −uk]r .

If uk ∈G(n), then T (δt)uk − uk ∈G(n). This is because T (δt) is a linear
operator and T (δt)gi(x) = b

n/2
i exp(aibi‖x + yi‖2) with bi = (1 − 4aiδt)−1.

Moreover, expanding (g1 + · · ·+ gN)r results in another series of Gaussian
functions. Thus we see that uk+1 ∈G(n) if uk ∈G(n) for all k.

The polynomial we use is the Lagrange interpolating polynomial [3,5,6]

Mp,α(ξ) :=
2p+1∑

j=0

⎛

⎜⎝min{0, αξj }
2p+1∏

k=0
k 
=j

ξ −αξk
αξj −αξk

⎞

⎟⎠ .



A SMOOTHING METHOD OF GLOBAL OPTIMIZATION 385

This polynomial interpolates the data

(αξ0,min{0, αξ0}), (αξ1,min{0, αξ1}), . . . , (αξ2p+1,min{0, αξ2p+1}),
where α>0 is a parameter and ξj are the zeros of the Chebyshev polyno-
mial of degree 2p+2, namely

ξj = cos
[

2j +1
4(p+1)

π

]
for j =0,1, . . . ,2p+1.

Instances of ξj and Mp,α are given in Table 1 and Figure 4 for illustration.
Note that Mp,α minimizes the maximum absolute error [2,3], i.e.,

max
ξ∈[−α,α]

|min{0, ξ}−Mp,α(ξ)|� max
ξ∈[−α,α]

|min{0, ξ}−P(ξ)| (10)

for every polynomial P of degree at most 2p + 1. In this sense, it is
the best approximation over the interval [−α,α]. Nonetheless |min{0, ξ}−
Mp,α(ξ)| can be very large for |ξ |>α. To achieve a high fidelity approx-
imation, α should be chosen such that |T (δt)uk(x)− uk(x)| � α for every
x ∈R

n.
It is worth noting that Mp,α is of even degree. This is because we have

used only the zeros of even-degree Chebyshev polynomials. In fact the
zeros of the odd-degree counterparts include the origin, at which min{0, ·}
is non-differentiable. This worsens the maximum error (10).

Finally, we replace min{0, ·} in (8) with Mp,αk to obtain

uk+1(x)=uk(x)+Mp,αk [T (δt)uk(x)−uk(x)]. (11)

The parameter αk is chosen such that |T (δt)uk(x)−uk(x)|�αk for every k=
0,1, . . . ,T δ−1 − 2 and x ∈ R

n. The selection of p and δt will be discussed
at the end of this subsection.

Table 1. The polynomial Mp,α and zeros ξj of the Chebyshev polynomials of degree 2p+2

p Mp,α(ξ)

1 −0.1353/α+0.5ξ −0.3827αξ2

2 −0.0863/α+0.5ξ −0.6609αξ2 +0.2526α3ξ4

3 −0.0637/α+0.5ξ −0.9204αξ2 +0.8479α3ξ4 −0.3662α5ξ6

4 −0.0506/α+0.5ξ −1.1728αξ2 +1.8948α3ξ4 −1.8732α5ξ6 +0.7031α7ξ8

p ξj
1 ±0.3826,±0.9239
2 ±0.2588,±0.7071,±0.9659
3 ±0.1951,±0.5556,±0.8315,±0.9808
4 ±0.1564,±0.4540,±0.7071,±0.8910,±0.9877
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Figure 4. The graphs of min{0, ξ} and M4,1(ξ).

4.2.2. Discussions

Each function obtained from the new Equation (11) is a power series in
T (δt)uk −uk. For instance, if p=αk =1, then

uk+1 =−0.1353+uk +0.5[T (δt)uk −uk]−0.3827[T (δt)uk −uk]2.
Therefore, a considerable fraction of the total computation cost would con-
tribute to expanding the powers of T (δt)uk − uk. Suppose that uk has
only two terms, i.e., uk(x)= c1 exp(a1‖x+ x1‖2)+ c2 exp(a2‖x+ x2‖2). Then
expanding [T (δt)uk −uk]2 would give another series of Gaussian functions
consisting of ten terms, i.e., ĉ1 exp(â1‖x+ ŷ1‖2)+· · ·+ ĉ10 exp(â10‖x+ ŷ10‖2),
where ĉi , âi and ŷi are the ith entries of, respectively, C,A and X:

C=
(
c2

1b
n
1, c

2
1, c

2
2b
n
2, c

2
2,−2c2

1b
n
2
1 ,−2c2

2b
n
2
2 ,

2c1c2(b1b2)
n
2 e

a1a2b1b2
a1b1+a2b2

‖x1−x2‖2

,−2c1c2b
n
2
1 e

a1a2b1
a1b1+a2

‖x1−x2‖2

, (12)

−2c1c2b
n
2
2 e

a1a2b2
a1+a2b2

‖x2−x2‖2

,2c1c2e
a1a2
a1+a2

‖x1−x2‖2
)�
,
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A= (2a1b1,2a1,2a2b2,2a2, a1b1 +a1, a2b2 +a2,

a1b1 +a2b2, a1b1 +a2, a1 +a2b2, a1 +a2)
�,

X=
(
x1, x1, x2, x2, x1, x2,

a1b1x1 +a2b2x2

a1b1 +a2b2
,
a1b1x1 +a2x2

a1b1 +a2
,

a1x1 +a2b2x2

a1 +a2b2
,
a1x1 +a2x2

a1 +a2

)
,

with bi = (1−4aiδt)−1 for i=1,2. In computing the above vectors, the cost
that grows with n contributes to the vector additions for C and X only.
This is rather inexpensive compared with that of the multiplications and
evaluating the exponentials.

The expansion of [T (δt)uk − uk]r needs to be computed using r nested
loops in a computer subroutine. Suppose that uk has N terms. If r

and N are too large, then the computer may need an unacceptably
long time to complete one iteration. However, even if we could wait for
the current iteration to complete, the expansion of [T (δt)uk − uk]r will
have

(
r+2N −1

r

)
= (r+2N −1)(r+2N −2) · · · (r+1)

(2N −1)!

terms, which makes the next iteration more difficult to proceed.
Fortunately many terms in the expansion of [T (δ)uk − uk]r can be

ignored because of their negligible values. For instance, in (12),

C= (0.33,1,0.1,0.49,−1.15,−0.44,−4.07×10−7,5.05×10−9,

3.91×10−9,−4.67×10−17)�

for n=1, δt=0.01, c1 =1, c2 =−0.7, a1 =−50, a2 =−100, x1 =0 and x2 =0.9.
Due to their insignificant values, the last four terms of the expansion can
be deleted without introducing much error.

The fidelity of uk to the exact solution u(kδt, ·) depends on δt and p.
The latter determines the degree of Mp,αk . These parameters also have
effects on the length of uk. Indeed the larger p is, the longer uk is
generated because the higher powers of T (δt)uk − uk were expanded.
Moreover, the smaller δt is, the larger the coefficients are, (see (12) for
instance) and hence the fewer terms can be ignored. In other words, a
closer approximation results in uk with more terms. Therefore δt and
p need to be chosen carefully to compromise between the fidelity and
length of uk. Because we do not have a useful rule to select the param-
eters, they are chosen on an ad hoc basis in the experiments considered
below.
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4.3. experiment results

We have conducted some experiments on one- and two-dimensional prob-
lems to demonstrate the feasibility and potential of the method. The results
to be presented in Figures 5–7 show that the method is capable of smooth-
ing out initial functions, and also preserving global minima. The method
is, however, not yet suitable for practical problems. It would be difficult
in the current stage to compare with other existing global optimization
methods.

In these experiments, global minima of uk are usually very close to that
of the cost functions. The shift is mainly due to errors incurred by time dis-
cretization and approximation of min{0, ·}. As we observe, the shift can be
severe if δt is too large or p is too small.

Furthermore, u0 and uk may not have the same optimum values because
Mp,αk (ξ) is nonzero for some ξ �0. Since T (δt)f (x∗)−f (x∗)�0, where x∗

is a global minimum of f , it may happen that Mp,αk [T (δ)f (x∗)−f (x∗)] 
=
0, and as a result u1(x

∗)= f (x∗)+Mp,α0 [T (δt)f (x∗)− f (x∗)] 
= f (x∗). For
this reason, the graphs of uk shown in the figures shift downwards after
each iteration. Of course this will not lead to any trouble if the global min-
imum of f has been sought already. The differences between the optimum
values can be reduced by using an approximating polynomial of higher
degree, i.e., using a larger p.

The results displayed in Figures 5–7 are typical in the experiments.
Shown in the legend boxes, K denotes the number of iterations that have
been carried out, and N0 and NK denote the length of u0 and uK , respec-
tively. We choose αk=α for k=1,2, . . . ,K. Moreover, we neglect a term of
uk whenever the magnitude of its coefficient is smaller than the threshold
ε >0.

Figure 5(a) and 5(b) show two univariate initial functions (top curves)
possessing three and four Gaussian terms, respectively. The smoothing fin-
ishes up with smoothed functions (bottom curves) possessing 851 and 790
terms, and both functions have a single minimum being very close to the
global minimum of the corresponding initial function.

Figures 6(a) and 7(a) show two bivariate initial functions possessing six
terms. As shown in Figures 6(b) and 7(b), the smoothing finishes up with
smoothed functions possessing 601 and 249 terms. Both functions have a
single minimum being very close to the global minimum of the correspond-
ing initial function, as seen from the contour plots in Figures 6(d) and 7(d).

Remark 4.1. As we mentioned in Section 3.3, smoothed functions usu-
ally evolve very slowly at saddle points with positive Laplacian. Surpris-
ingly, as we observe, perturbation by approximation error tends to speed
up the evolution at the saddle points. As a result, uk becomes unimodal
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(b)

(a)

Figure 5. Smoothing of one-variable functions using (11).
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(a)

(d)(c)

(b)

Figure 6. Smoothing of a two-variable function using (11).

after just a few iterations as seen from Figures 6(b) and 7(b). This obser-
vation offers a clue of using perturbation to overcome the difficulty.

Remark 4.2. We have carried out some experiments on higher-dimen-
sional problems for n up to 20. As we expect, computation time required
for an iteration increases just slightly with n for initial functions having the
same number of terms. We plan to access the results in the future. This will
probably be achieved by finding global minima of the smoothed and initial
functions by exhaustive search, and then making comparisons.

5. Conclusion

A smoothing method of global optimization has been proposed in this
paper. The smoothed function of the method is the solution of a heat diffu-
sion equation with external heat source. Using results in theory of viscos-
ity solutions, we have shown that global minima of cost functions always
survive through smoothing, i.e., any global minimum of a cost function
is again a global minimum of the smoothed function, and both functions
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(b)(a)

(c) (d)

Figure 7. Smoothing of a two-variable function using (11).

have the same optimum values. Several numerical examples have been given
to demonstrate this property.

Moreover, we have devised a solution method to compute smoothed
functions. The core is an iterative equation, by which smoothed functions
can be obtained analytically (without discretization of R

n) for certain clas-
ses of initial functions. We have considered initial functions which can be
expressed as a series of Gaussian functions. Finally, we have demonstrated
the effectiveness and potential of the method with experimental results.

Appendix A. Theory of Viscosity Solutions

In this Appendix, we first give a definition of viscosity solution of initial-
value problems with parabolic equations. In Section A.2 we present the
proof of our existence and uniqueness result, i.e.. Proposition 3.4. Finally,
in Section A.3, we prove two propositions that have been employed in
Section 3.
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A.1. definition of viscosity solutions

Let u be a real-valued function defined on [0, T )×R
n. We consider the vis-

cosity solution of the parabolic PDE

∂u

∂t
(t, x)+F [

Du(t, x),D2u(t, x)
]=0 for (t, x)∈ (0, T )×R

n (13)

with the initial condition u(0, ·)= u0 on R
n. We recall that Du and D2u

denote, respectively, the gradient vector and Hessian matrix with respect to
x; and Sn represents the set of all n× n symmetric matrices of real num-
bers. We assume that F is continuous on R

n × Sn and degenerate elliptic,
i.e.,

F(p,X+Y )�F(p,X)
for every X,Y ∈Sn and Y �0.

Viscosity solutions of (13) have been widely studied. Interested readers
are referred to the papers by Crandall [8,11], Chen [4], Giga [15] and Bar-
les [1]. The first two papers are self-contained expositions of basic theories,
concentrating on problems with bounded domains; the last two papers con-
sider problems with unbounded domains.

DEFINITION A.1. A function u : (0, T )×R
n→R is a viscosity subsolution

(supersolution) of (13) on (0, T )×R
n, if u is upper (lower) semicontinuous

on (0, T )×R
n, and for each φ ∈C2((0, T )×R

n) and maximum (minimum)
(t̂ , x̂)∈ (0, T )×R

n of u−φ, we have

φt(t̂ , x̂)+F
[
Dφ(t̂, x̂),D2φ(t̂, x̂)

]
�0.(

φt(t̂ , x̂)+F
[
Dφ(t̂, x̂),D2φ(t̂, x̂)

]
�0.

)

Moreover, u is a viscosity solution of (13) on (0, T )× R
n if it is both vis-

cosity subsolution and supersolution of (13) on (0, T )×R
n.

DEFINITION A.2. Suppose that u is a viscosity subsolution (superso-
lution) of (13) on (0, T ) × R

n. If u is upper (lower) semicontinuous on
[0, T )×R

n and satisfies

u(0, x)�u0(x),
(
u(0, x)�u0(x)

)

for every x ∈ R
n, then it is a viscosity subsolution (supersolution) of (13).

Moreover, u is a viscosity solution of (13) if it is both viscosity subsolution
and supersolution of (13).
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A clear presentation of the motivations behind these definitions can be
found in [13]. Alternate definitions were announced in [10] and [22], which
are more appealing in some respects and convenient for certain purposes. It
is however not worthwhile to state the alternate definitions here since our
work apparently does not enjoy the benefits.

In Definition A.1 a C2 function φ is introduced so that the inequalities
depend on derivatives of φ only. This does not lead us to define derivatives
for u, Therefore u needs not to be differentiable. But it is necessarily con-
tinuous on [0, T )×R

n since it is both upper and lower semicontinuous on
[0, T )×R

n.

A.2. proof of existence and uniqueness result

To prove the result, we use the following notations : The upper (lower)
semicontinuous envelope [8,11] of u:Q→ [−∞,∞], where Q ⊂ R

n, is the
function defined by

u∗(x)= lim
r↓0

sup {u(y) :y ∈Q,‖y−x‖� r} , (14)
(
u∗(x)= lim

r↓0
inf {u(y) :y ∈Q,‖y−x‖� r}

)
(15)

for each x ∈ Q. The following properties will be used subsequently: 1f
v is upper semicontinuous such that u � v on Q, then u � u∗ � v

on Q. Similarly if v is lower semicontinuous such that v� u on Q, then
v�u∗ �u on Q.

The existence and uniqueness result will be proved using Proposition 3.3;
the latter is a special version of Theorem A.3. The theorem was given
in [15] and considers the Equation (13) with F satisfying the following
conditions:

(F1) F is continuous on (Rn \ {0})×Sn.
(F2) F(p,X+Y )�F(p,X) for every X,Y ∈Sn with Y �0.
(F3) −∞<F∗(0,0)=F ∗(0,0)<∞ where F∗ and F ∗ are, respectively, the

lower and upper semicontinuous envelopes of F , i,e.,

F∗(p,X)= lim
ε↓0

inf{F(q,Y ) :q 
=0,‖p−q‖� ε,‖X−Y‖� ε}

and F ∗ =−(−F)∗. Here ‖X‖ denotes the operator norm of X∈Sn.
(F4) For every R>0,

cR = sup {|F(p,X)| :p 
=0,‖p‖�R,‖X‖�R}<∞.
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THEOREM A.3. Suppose that F satisfies (F1)–(F4) Let µ and ω be,
respectively, viscosity subsolution and supersolution of (13) on (0, T )× R

n.
Assume that µ and ω satisfies the conditions:

(V1) There exists a number K > 0 such that µ(t, x) � K(‖x‖ + 1) and
ω(t, x)�−K(‖x‖+1) for every (t, x)∈ (0, T )×R

n;
(V2) There is a modulus m such that µ∗(0, x)−ω∗(0, y)�m(‖x − y‖) for

every x, y ∈R
n; and

(V3) There exists a number K > 0 such that µ∗(0, x)−ω∗(0, y)�K(‖x −
y‖+1) for every x, y ∈R

n.

Then µ<ω on (0, T )×R
n.

Now we prove the existence and uniqueness result, i.e., Proposition 3.4.
It essentially follows the proofs of Theorem 3.1 of [1] and Theorem 4.1
of [11].

Proof of Proposition 3.4. Consider the initial-value problem associated
with the following equation and initial condition:

ut +Fε(D2u)=0, on (0, T )×R
n,

u=f, in {0}×R
n, (16)

where Fε(X)=min
{
1/ε,−min {0, tr(X)}} for ε>0 and X∈Sn. It is straight

forward to show that uε(t, x)= f (x)− t/ε and uε(t, x)= f (x)+ t/ε are,
respectively, subsolution and supersolution of (16). We now split the proof
into three parts.
Part I Here we show that (16) has solution for each ε>0. Define W(t, x)=
sup{w(t, x) :uε�w�uε , w is a subsolution of (16)} for each (t, x)∈ [0, T )×
R
n. The upper semicontinuous envelope W ∗ is finite because uε �W ∗ �uε .

Hence we see from Proposition 8.2 of [8] that W ∗ is a subsolution of (16).
Because W is the maximal subsolution between uε and uε , it follows that
W ∗ �W . But W �W ∗, therefore W =W ∗ is a subsolution of (16).

If W∗ fails to be a supersolution at (t̂ , x̂)∈ (0, T )×R
n, Lemma 9.1 of [8]

suggests that for any small κ > 0 there exists a subsolution Wκ of (16) on
(0, T )×R

n having the properties

Wκ �W on (0, T )×R
n,

sup
(0,T )×Rn

(Wκ −W)>0,

Wκ(t, x)=W(t, x) for (t, x)∈ (0, T )×R
n, |t− t̂ |+‖x− x̂‖≥κ.

Choosing κ� |t̂ | small enough and letting B={
x ∈R

n :‖x− x̂‖<κ}, we see
that Wκ =W �uε in ({0}×B)∪ ([0, T )×∂B) where ∂B denotes the boundary
of B. Theorem A.1 of [4] then suggests that Wκ �uε on (0, T )×B. Since W is
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the maximal subsolution between uε and uε , we arrive at the contradiction
Wκ �W on (0, T )×B. Therefore W∗ is a supersolution. The comparison
result Theorem A.3 implies that W ∗ =W �W∗. This shows that uε =W is a
solution of (16), which is continuous on [0, T )×R

n.
Part II The solution uε is locally bounded on [0, T )×R

n. This is because
the functions µ, (t, x)= minx∈Rn f (x) and ω(t, x)= f (x) are, respectively,
subsolution and supersolution of (16). It is apparent that Fε satisfies (F1)–
(F4), and µ and ω satisfy (V1)–(V3). Proposition A.3 therefore suggests
that, µ�uε �ω on [0, T )×R

n. This shows our assertion.
Part III Then we can apply the “half-relaxed-limits” method to complete
the proof. The method consists in introducing

u(t, x)= lim
ε↓0

sup∗ uε(t, x)

:= lim
m↓0

sup
{
uε(τ, ξ) : ε�m, (τ, ξ)∈ (0, T )×R

n, |τ−t |+‖ξ −x|�m};
u(t, x)=− lim

ε↓0
sup∗ (−uε(t, x)) .

In virtue of Part II, they are well-defined with lower bound f (x∗) and
upper bound f (x) where x∗ denotes a global minimum of f .

Theorem 8.3 of [8] therefore suggests that u and u are, respectively sub-
solution and supersolution of the smoothing problem. Note that

u(t, x)�f (x)�K(‖x‖+1)�K(‖x∗‖+1)(‖x‖+1); and

u(t, x)�f (x∗)�−K(‖x∗‖+1)�−K(‖x∗‖+1)(‖x‖+1).

Proposition 3.3 applies giving the inequality u� u, Since u� u by defini-
tions, this leads us to conclude that u= u= u is a continuous solution of
the smoothing problem. Uniqueness of u is a direct consequence of the
comparison result.

A.3. auxiliary results

In this section we state and prove two propositions which have been
employed to prove the global minima preserving property in Section 3.

PROPOSITION A.4. Let f be the initial function of a smoothing problem
satisfying (U1)–(U3), and denote by f its convex envelope over R

n. Let
g(t, x)=f (x) and g(t, x)=f (x) for every (t, x)∈ [0, T )×R

n. Then g and g
are, respectively, viscosity supersolution and subsolution of the problem.

Proof. Let φ be twice continuously differentiable on (0, T ) × R
n, and

(t∗, x∗) in (0, T )× R
n be a minimum point of g− φ. Since g is constant

along the t-axis, we have φt(t∗, x∗)=gt(t∗, x∗)=0. As a result,
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φt(t
∗, x∗)−min

{
0, tr(D2φ(t∗, x∗))

}
�0.

Moreover g(0, x)=f (x) for every x ∈R
n. Hence g is a viscosity supersolu-

tion of the smoothing problem.
Now suppose that (t∗, x∗) is a maximum of g−φ. Since g is convex on

R
n, there exists a (subgradient) vector h such that g(t, x)�g(t∗, x∗)+ (x−

x∗)Th for every x ∈R
n. As a result, we have φ(t, x)�φ(t∗, x∗)+ (x−x∗)Th

for all (t, x) sufficiently close to (t∗, x∗). By Taylor expansion of φ around
(t∗, x∗), this inequality can be written as

(x−x∗)T(p−h)+ 1
2(x−x∗)TX(x−x∗)

+o(‖t− t∗‖+‖x−x∗‖2)�0, (t, x)→ (t∗, x∗),

where p=Dφ(t∗, x∗) and X=D2φ(t∗, x∗). By sending (t, x)→ (t∗, x∗), we
see that p=h and X�0. Therefore

φt(t
∗, x∗)−min {0,X}=0.

Moreover g(0, x)= f (x)� f (x) for every x ∈ R
n. Hence g is a viscosity

subsolution of (3).

PROPOSITION A.5. Let u be the viscosity solution of a smoothing prob-
lem. Let υ(t, x)= u(t + τ, x) for τ > 0 and every (t, x)∈ [0, T − τ)× R

n. If
the initial function f satisfies (U1)–(U3), then υ is a viscosity subsolution
of the smoothing problem on (0, T − τ)×R

n.
Proof. Let T ′ = T − τ . For every ψ twice continuously differentiable on

(0, T ′)× R
n and a maximum (t̂ , x̂) ∈ (0, T ′)× R

n of υ −ψ , there exists a
maximum (τ + t̂ , x̂) of u−φ, where φ(t + τ, x)=ψ(t, x). Since u is a sub-
solution of the smoothing problem, we have

φt(τ + t̂ , x̂)�min{0,�φ(τ + t̂ , x̂)}.
Because φt(τ + t̂ , x̂)=ψt(t̂, x̂) and �φ(τ + t̂ , x̂)=�ψ(t̂, x̂), we conclude that

ψt(t̂, x̂)�min {0,�ψ(t̂, x̂)}.
Therefore υ is a subsolution on (0, T ′)×R

n.
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